

Introduction

HEALTH SCIENCES

DIVISION

- The penis is fundamentally a biomechanical implement penile load-bearing is assumed by the tunica albuginea.
- Tunica biomechanics have been directly measured in human cadavers and cingulates but never fresh human specimens.

Quantifying the tunica's biomechanical properties helps us:

- understand disease states of the penis
- apply to tissue engineering and medical devices

Procured penile tissue from patients undergoing penectomy

- To generate experimental samples, strips of tunica were prepared in both longitudinal and circumferential orientations.
- To calculate the elasticity and failure strength of a sample, we generated a stress-strain curve via mechanical extensometry.
- From this curve the Young's modulus and ultimate tensile strength were calculated.

Tensile Strength of Penile Tunica Albuginea in a Human Model Alexander M. Kandabarow^a, Eric Chuang^a, Kevin McKenna^c, Brian Le^d, Kevin McVary^b, Alberto Colombo^{a,c}

^aLoyola University of Chicago, Stritch School of Medicine ^bCenter for Male Health, Department of Urology, Stritch School of Medicine, Loyola University Medical Center ^cNorthwestern University, Feinberg School of Medicine

Stress-strain curves obtained via mechanical extensometry of tunical albuginea in both the longitudinal and the circumferential directions.

- Initially, the tissue is very compliant and stretches easily without having much stress applied to it; this is when elastin fibers in the tissue are starting to stretch and uncoil.
- At the inflection point, the elastin reaches the maximum stretch, and tensile strength, the tissue fails.

Homo sapiens	Mean ultimate strength, MPa (SD)	Mean Young's modulus, MPa (SD)
Longitudinal	1.8 (0.6)	8.1 (1.7)
Circumferential	1.7 (0.1)	10.3 (3.1)

^dUniversity of Wisconsin School of Medicine and Public Health, Department of Urology

Strain

the collagen fibers begin to stretch. Eventually at the point of ultimate

Results

Papio anubis

Longitudinal

Circumferential

- 2.0, p=0.29).
- than human TA.
- (FE) models.
- and penile prostheses.

Mean ultimate strength, MPa (SD)

4.3 (1.8)

Mean Young's modulus, MPa (SD)

34.0 (19.2)

2.0 (1.0)

11.7 (4.6)

• In comparison with baboons (*Papio anubis*), human samples had a lower Young's modulus longitudinally (8.1 vs 34.0, p<0.01) but not circumferentially (10.3 vs 11.7, p=0.32).

• Additionally, the human samples had a lower maximum stress longitudinally (1.8 vs 4.3, p=0.01) but not circumferentially (1.7 vs

• These data show that baboon TA is stiffer and stronger longitudinally

Conclusion

Knowing the mechanical properties of the tunica albuginea will be useful in designing penile models, such as dynamic 3D finite element

• Application to developing *in silico* models for disease modeling and technology: Peyronie's disease, penile trauma, erectile dysfunction

The variation shown between human and primate models support the need for fresh human tissue measurements to characterize the mechanical properties of the penis.