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_, Fibrous plaque

* understand disease states of
the penis Stress-strain curves obtained via mechanical extensometry of tunica Conclusion
sethra . - - - albuginea in both the longitudinal and the circumferential directions.
apply to tissue engineering and * Knowing the mechanical properties of the tunica albuginea will be

medical devices useful in designing penile models, such as dynamic 3D finite element
(FE) models.

» Application to developing in silico models for disease modeling and
technology: Peyronie’s disease, penile trauma, erectile dysfunction
and penile prostheses.
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* The variation shown between human and primate models support the
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éT k : Range sensor need for fresh human tissue measurements to characterize the
{& ' * Initially, the tissue is very compliant and stretches easily without mechanical properties of the penis.
A I e | having much stress applied to it; this is when elastin fibers in the
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At the inflection point, the elastin reaches the maximum stretch, and
the collagen fibers begin to stretch. Eventually at the point of ultimate
tensile strength, the tissue falils.
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Procured penile tissue from patients undergoing penectomy

* To generate experimental samples, strips of tunica were prepared
in both longitudinal and circumferential orientations.

* To calculate the elasticity and failure strength of a sample, we -
generated d StreSS-Strain curve Via meChanicaI eXtensometry' LongltUdlnaI 18 (06) 81 (1 7) FIGURE 4. Distribution of von Mises stresses in (A) the normal penis model,

(B) penis with asymmetrical geometry, and (C) Peyronie’s disease. A central cross-section
1Is magnified on each stress diagram to show locations where maximal internal stresses

* From this curve the Young's modulus and ultimate tensile strength Circumferential 1.7 (0.1) 10.3 (3.1) oceur.
were calculated.




